\n \nSAF specializes in the development of ordering and forecasting software for the retail, logistics and industrial sectors. SAF's three related core products are software engines: SAF SuperStore and SAF SuperWarehouse, targeted at automated goods replenishment for the retail sector, and SAF SuperForecast that can be used for forecast-based planning across all industries. \n \nFor SAP, the retail and wholesale industries are an important market with significant growth potential. Companies in these industries increasingly prefer software that offers standardized and integrated business processes from corporate headquarters to the warehouse to the store level. Insightful sales forecasts, greater transparency of stock level and replenishment orders and process automation through forward-looking software solutions are recognized more and more as areas of significant importance in gaining competitive advantage. \n"}]}};
const country = "US";
const language = "en-US,en;q=0.5";
const SITE_LANGUAGE = "en";
const siteName = "RIS News";
const userRoles = ["anonymous"];
const userUid = 0;
const indexName = "risnews";
window.dataLayer = window.dataLayer || [];
const data = {};
data.entityTaxonomy = {};
const contentTypes = [
"article",
"blog",
"bulletin",
"embed_page",
"landing_page",
"event",
"image",
"page",
"product",
"whitepaper",
"video",
"tags",
];
if (
routeInfo &&
"bundle" in routeInfo &&
contentTypes.includes(routeInfo["bundle"])
) {
data.entityBundle = routeInfo.bundle;
data.entityTitle = `${routeInfo.title} | ${siteName}`;
data.entityId = routeInfo.id;
data.entityName = routeInfo.author?.uname;
data.entityCreated = routeInfo.created;
data.sponsored = routeInfo.sponsored;
data.sponsor = routeInfo.sponsoringCompany;
data.entityType = "node";
data.entityLangcode = SITE_LANGUAGE;
data.siteName = siteName;
data.drupalLanguage = language;
data.drupalCountry = country;
data.userRoles = userRoles;
data.userUid = userUid;
data.entityTaxonomyKeys = {};
data.entityTaxonomyHierarchies = {};
data.parentNaicsCode = {};
data.isPro = false;
data.algoliaIndexName = indexName;
// Add toxonomy data
const taxonomies = {
businessTopic: "business_topic",
contentType: "content_type",
company: "company",
marketSegment: "market_segment",
};
const getHierarchy = (term, terms = []) => {
terms.push({ id: term.id, name: term.name });
if (term.parentTerm != null) {
getHierarchy(term.parentTerm, terms);
}
return terms;
};
const getTerms = (term, useApiId = false) => {
return { id: useApiId ? term.apiId : term.id, name: term.name };
};
const getKeys = (term) => {
return { id: term.id, name: term.apiId };
};
Object.entries(taxonomies).forEach(([key, item]) => {
terms = routeInfo[key];
if (terms && terms.length > 0) {
data["entityTaxonomy"][item] = terms.map((term) =>
getTerms(term, key === "company")
);
if (key !== "company") {
data["entityTaxonomyKeys"][item] = terms.map(getKeys);
termGroups = [];
terms.forEach((term, termInd) => {
termGroups[termInd] = getHierarchy(term);
});
data["entityTaxonomyHierarchies"][item] = termGroups;
}
}
});
data["entityTaxonomy"]["tags"] = routeInfo["topics"] || [];
// Primary Topic is either the business topic or the top tag.
if (routeInfo["businessTopic"]?.length > 0) {
data["entityPrimaryTopic"] = routeInfo["businessTopic"][0]["name"];
} else {
if (routeInfo["topics"]?.length > 0) {
data["entityPrimaryTopic"] = routeInfo["topics"][0]["name"];
}
}
// Primary and secondary entityNaicsCodes come from the MarketSegment
if (routeInfo.marketSegment?.length > 0) {
data.entityNaicsCode = {};
data["entityNaicsCode"]["id"] = routeInfo["marketSegment"][0]["id"];
data["entityNaicsCode"]["name"] =
routeInfo["marketSegment"][0]["naicsCode"];
if (routeInfo["marketSegment"][0]["parentTerm"] != null) {
data["parentNaicsCode"]["id"] =
routeInfo["marketSegment"][0]["parentTerm"]["id"];
data["parentNaicsCode"]["name"] =
routeInfo["marketSegment"][0]["parentTerm"]["naicsCode"];
}
} else {
data.entityNaicsCode = [];
}
if (routeInfo.taggedPro) {
data.isPro = routeInfo.taggedPro;
}
window.dataLayer.push(data);
} else if (routeInfo && "vid" in routeInfo) {
data.entityBundle = "tags";
data.entityTitle = routeInfo.name;
data.entityId = routeInfo.id;
data.entityName = routeInfo.author?.uname;
data.entityCreated = routeInfo.created;
data.entityType = "taxonomy_term";
data.entityLangcode = SITE_LANGUAGE;
data.siteName = siteName;
data.sponsored = routeInfo.sponsored;
data.sponsor = routeInfo.sponsoringCompany;
data.drupalLanguage = language;
data.drupalCountry = country;
data.userRoles = userRoles;
data.userUid = userUid;
data.algoliaIndexName = indexName;
data["entityTaxonomy"]["tags"] = {
id: routeInfo["id"],
name: routeInfo["name"],
};
window.dataLayer.push(data);
}
})();
SAP Announces Intent to Acquire SAF
SAP Announces Intent to Acquire SAF SAP announces its intent to purchase all shares in
SAF Simulation, Analysis and Forecasting AG. Through the intended acquisition, SAP plans to further extend and complement its current planning, forecasting and replenishment solution portfolio for retail and wholesale companies.
SAF specializes in the development of ordering and forecasting software for the retail, logistics and industrial sectors. SAF's three related core products are software engines: SAF SuperStore and SAF SuperWarehouse, targeted at automated goods replenishment for the retail sector, and SAF SuperForecast that can be used for forecast-based planning across all industries.
For SAP, the retail and wholesale industries are an important market with significant growth potential. Companies in these industries increasingly prefer software that offers standardized and integrated business processes from corporate headquarters to the warehouse to the store level. Insightful sales forecasts, greater transparency of stock level and replenishment orders and process automation through forward-looking software solutions are recognized more and more as areas of significant importance in gaining competitive advantage.
X
This ad will auto-close in 10 seconds